(We marked page numbers based on the textbook, ‘Fundamentals of Number

Theory” written by Willam J. Leveque.)

Chapter 1

p. 5

primepi(x) : the number of prime numbers that are less than or equal to x (=

=7(x)

? primepi(10)

%1 = 4
? primepi(107°3)
%2 = 168

? primepi(10™10)
%3 = 455052511

p. 7

numdiv(x) : the number of divisors of z (= 7(x))

? numdiv(12)
%1 =4

Remind that 12 has 6 divisors; 1,2,3,4,6, and 12.

Programming)

For example, you may construct a table of values of 7(n) for 1 <n <5 as follows:



p. 19 division algorithm

a\/b @ returns quotient ¢ where a=bg+r, 0 <r<|q|.

a\b and a%b : return quotient ¢ and remainder r respectively where a=bg+r,
0=r<gq

divrem(x,y) : returns the quotient a\b and remainder a%b in the form of column

matrix.
gp > -7V 3
%1 = -2
gp > -7\ 3
%2 = -3
gp > -7 % 3
%3 =2

gp > divrem(x,y)
%4 = [-3, 2]~

Recall that =7 =3x(-2)+(-1) = 3*(-3)+2.

p. 21

factor(x) : factorization of x

? factor(12)

For each row vector of the result, the first entry is the prime number that divides

x, and the second is its exponent.



P.24

sigma(x, k) : the sum of k-th powers of the positive divisors of |z|. For example,

simga(12,3)= 1>+ 28+ 3> + 43+ 63 +12° = 2044.

gp > sigma(6, 1)
%1 =12




Chapter 2

.32

ged(x, y) © finds the greatest common divisor of x and vy.

gp > gcd(15, 21)
%1 =3

p.33

bezout(x,y) finds [u, v, d] such that x*u + y*v = d where d is the greastest

common divisor of x and vy.

gp > bezout(123, 54)
%1 =[-7, 16, 3]

gp > bezout(47, 91)
%2 = [31, -16, 1]

p.35 Problem14
Programming)

Write program for the Euclidean algorithm.

>EucAlg(m,n)=local(a,b,r);if(abs(m)>=abs(n),{a=m;b=n;},{a=nb=m;});r=a%b;;while(r!=0,
print(a,"=",b,"*",a\b,"+" ,r);a=b;b=rir=a%b;);if(r==0,print(a, "=",b, "*",a\b));

Then you type
> EucAlg(741,715)

and compare the result to the equations on p.32. The result should be

741 =715%1+426
715=26*27+13



It is easy to check that underlined 13 on the last line is the gcd of 741 and 715.

The program for the least remainder algorithm is left for the readers.

p.44

lem(x, y) : finds the least common multiplier of x and vy.

gp >lecm(14, 35)
%1 = 70)



Chapter 3

p.53

eulerphi(n) : computes the Euler phi function ¢(n)

gp > eulerphi(17)

%1 =16
gp > eulerphi(36)
%2 =12

p.62 Problem 1

To find solutions of the system of linear modular equations, we may use the
Chinese Remainder Theorem. Suppose we have the following system of linear

modular equations:

To solve this system, we type

chinese(chinese(Mod(3,4),Mod(5,21)),Mod(7,25))
%1 = Mod(1307,2100)

To be precise, chinese(Mod(3,4),Mod(5,21)) returns Mod(47,84) which means
x =47 (mod84) is the solution of two modular equations

=3 (mod4)
=5 (mod21).

X. Primitive root P.79

znprimeroot(x) calculates a primitive root of x, where x is a power of a prime.
If p is a prime and g is a primitive root mod p, then znlog(x, g) returns the

discrete logarithm of x (to the base g) in Z/pZ.



For example, 3 is a primitive root mod 17, and we have

=1, 3'=3 32=9, 3*=10, 3'=13, 3° =5, 3671 g7 38=16
39=14, 3078, 31 =7, 32%2=4 38 =12 34 =2, 35 =6, 30=1

Thus the discrete logs mod 17 (to the base 3) are

log=0, log2 =14, logd=1, logd =12, logb =5, logh =15, log7i =11, log8 =10
log9 =2, logl0=3, logll =7, logl2=13, logld3 =4, logld =9, logld =6, logl6 =28

gp > znprimroot(17)
%1 = Mod(3, 17)

gp > znlog(2, znprimroot(17))

%2 = 14
gp > znlog(11, znprimroot(17))
%3 =7

gp > znlog(14, Mod(3,17))
%4 =9



Chapter 5
p.109

kronecker(x,y) : returns the Legendre symbol (or its generalization, Jacobi symbol)

(x/y).

gp > kronecker(2, 17)
%l =1

gp > kronecker(14, 17)
%1 = -1

It indicates that 2 is a quadratic residue modulo 17, but 14 is not.

To check the multiplicative of Jacobi symbol,

gp > kronecker(2, 21)
%l = -1

gp > kronecker(2,3)
%2 = -1

gp > kronecker(2,7)
%3 =1



Chapter 6

P.125
sumdiv(x, X, (X)) sums f(X) over all positive divisors of mn. Note that
sumdiv(x, X,X Y is same as sigma(x.,k), but computation of sigma(z,k) is much

faster because it takes advantages of the multiplicativity of z*,

gp > sumdiv(6,X,X)
%1 =12

gp > sumdiv(6,X,X"3)
%2 = 2044

P.127

moebius(n) : Moebius function ,u(n)ZO if m contains a repeated prime factor, else

(1) =1 and p(n)=(—1)* where k is the number of distinct prime factors of n.

gp > moebius(12)
%1 =0
gp > moebius(6)
%2 =1
gp > moebius(30)
%3 = —1

P.154

zeta(s) is the Riemann zeta function.

gp > zeta(1)
«x% at top—level: zeta(1)

N

* k%

*xx* zeta: domain error in zeta: argument = 1

gp > zeta(2)
%1 = 1.6449340668482264364724151666460251892



gp > zeta(0)
%2 = —0.500000000000000000000000000000000000



Chapter 8

P.198 (Pell’s equation)

The instruction contfrac(x, 1) will give an approximation to % based on !
convergents. For example, contfrac(41/18, 3) returns [2,4], which is the same as
[2,3,1]

The continued fraction expansion of an irrational number is infinite, but when the
irrational number is \/N there are very useful properties of periodicity and

symmetry. We will illustrate with an example. The continued fraction of \/N is
V2l = 4,1,1,21,1,8 = [4,1,1,2,1,1,8,1,1,2,1,1,8,1,1,2,1,1.8,...].
The general pattern is
[y A yevey @y 20,01 o 30,, 20, A ey @, 208,

where the segment ay;...,a, is symmetric about its midpoint. If n is odd, then the n
-th convergent gives a minimal solution of Pell's equation. In our case, n =5, and

the command contfracpngn([4,1,1,2,1,1]) returns p,n/qn =55/12. Indeed, we have
2 —Ng =(55)*—21(12)* =3025—3024 =1.

gp > contfracpngn([4,1,1,2,1,11])
%1 =

[55 32]

[12 7]

More on Continued Fraction
contfrac(x,{b},{nmax}) returns contined fraction expansion of x. nmax is a bound

for the number of terms of the result.

Here, {b} = [b_0,b_1l,cdots,b_n] represents the vector of numerators of the

continued fraction.

contfrac(x,{[b_0,cdots,b_n},inmax}) = [a_l,a_2,'*-,a_{nmax}] means, in fact,



b b
ot at
bl b2

ot at+

lf bo #O, x‘b0:a1+

lf b(J:O’ x:a‘l—l_
gp > contfrac(sqrt(2)-1,6)

%1 =10, 2, 2, 2, 2, 2]

gp > contfrac(19/17,[2,3,3],3)

%2 = (2, 12, 4]

Cautionl : If input {b} is an integer b, then {nmax} will be ignored and the

commnad contfrac(x, b, nmax) evaluates contfrac(x,b)

Caution? : contfrac command is indeed unstable because its output may not be

the one that we do not expect at all. For example,

contfrac(Pi,4) outputs [3,7,16]. Because Pi is irrational, contfrac(Pi, n) must output
a row-vector of n entries. Another example is the above explanation of the

command itself.



Appendix

PARI Types & Input Formats

In GP, you do not need to define the types of variables you are going to use.
(e.g. int a; or double b; are not neccessary.)

Moreover, some binary operations in GP works properly even if the types of inputs
are different.
(See, for example, t_INTMOD. Note that 4+5 = 2 mod 7)

The followings are typical types of objects in GP. If GP outputs an error code, this
table may be helpful.

Description
Example
Integers(It may be decimal, hexadecimal, or binary.)

Type

gp > a=0x1F
%1 = 31
t_INT gp > b=0bl101
%2 =5

gp > a+b

%3 = 36

a
Real numbers. To represents rational number 7 in binary,
t_REAL

you may add dot to the numerator(Input a./b).
31.4, 5.27 E4, 1./3
Integers modulo m

gp > a=Mod(4,7)
t_INTMOD %1 = Mod(4,7)
gp > a+b

%2 = Mod(2.,7)

Rational Numbers. Note here that a/b is of type t_FRAC iff
a and b are of type t_INT. GP operates suitably so that a/b

may be translated
t_FRAC .
to a*b” ") Mod m if a is of type t_INT and b is of type

t_INTMOD(or t_FFELT). Furthermore, unlike MATLAB or so

on, 1/3 does not mean 0.333---.




GP really reads 1/3 as a rational number "—

3
¢ FFELT Element in finiite field GF(gq). @ may not be prime.
5+ffgen(13)
t COMPLEX Complex Numumbers. [:=sqrt(-1). Do not forget to use *
3+sqrt(10) =]
Polynomials modulo g. The behavior of t_POLMOD varible is
t_POLMOD similar to the one of t_INTMOD.
Mod(f, g)
t POL Polynomaials. Do not forget to wuse * to represent
- multiplication of coefficient.
t VEC/t_COL Row/Column Vectors. "~" represents transpose operation.
[x.y.zl/[xy.z]~
t MAT Matrices. Each row-vectors are divided by semi-colon.

[a,b:c,d]




